On the time-dependent Hartree-Fock equations coupled with a classical nuclear dynamics

نویسنده

  • Eric Cancès
چکیده

We prove a global-in-time existence and uniqueness result for the Cauchy problem in the setting of some model of Quantum Molecular Chemistry. The model we are concerned with consists of a coupling between the time-dependent Hartree-Fock equations (for the electrons) and the classical Newtonian dynamics (for the nuclei). The proof combines semigroup techniques and the Schauder xed-point theorem. We also extend our result in order to treat the case of a molecule subjected to a time-dependent electric eld. RRsumm Nous montrons que le probllme de Cauchy global pour un moddle de Chimie Quantique mollculaire est bien poss. Le systtme que nous tudions couple d'une part les quations de Hartree-Fock ddpendantes du temps qui ddcrivent l''volution de la connguration lectronique de la mollcule, et d'autre part les quations de la dynamique Newtonienne qui rgissent le mouvement des noyaux. On utilise les techniques de semi-groupes pour traiter l''volution et un argument de point xe pour traiter le couplage. Le mmme probllme est ensuite tudii en prsence d'un champ lectrique ddpendant du temps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and regularity of the solution of a time dependent Hartree-Fock equation coupled with a classical nuclear dynamics

We study an Helium atom (composed of one nucleus and two electrons) submitted to a general time dependent electric field, modeled by the Hartree-Fock equation, whose solution is the wave function of the electrons, coupled with the classical Newtonian dynamics, for the position of the nucleus. We prove a result of existence and regularity for the Cauchy problem, where the main ingredients are a ...

متن کامل

The Variational Splitting Method for the Multi-Configuration Time-Dependent Hartree-Fock Equations for Atoms

Abstract: We discuss the numerical approximation of the solution to the multiconfiguration time-dependent Hartree-Fock (MCTDHF) equations in quantum dynamics. The associated equations of motion, obtained via the Dirac–Frenkel time-dependent variational principle, consist of a coupled system of low-dimensional nonlinear partial differential equations and ordinary differential equations. We exten...

متن کامل

Time-dependent coupled-cluster approach to many-body quantum dynamics

The curse of dimensionality severely limits the application of standard basis-expansion methods for solving the time-dependent Schrd̈inger equation: the number of discrete degrees of freedom grows combinatorially with the number of grid points or single-particle basis functions. We therefore propose to use a time-dependent formulation of the highly successful coupledcluster (CC) method used in e...

متن کامل

Variational-Splitting Time Integration of the Multi-Configuration Time-Dependent Hartree–Fock Equations in Electron Dynamics

We discuss the numerical approximation of the solution to the multi-configuration time-dependent Hartree-Fock (MCTDHF) equations in quantum dynamics. The MCTDHF method approximates the high-dimensional wave function of the time-dependent electronic Schrödinger equation by an antisymmetric linear combination of products of functions depending only on three-dimensional spatial coordinates. The eq...

متن کامل

Gaussian phase-space representation of fermion dynamics: Beyond the time-dependent Hartree-Fock approximation

A Gaussian operator representation for the many-body density matrix of fermionic systems, developed by Corney and Drummond Phys. Rev. Lett. 93, 260401 2004 , is used to derive approximate decoupling schemes for their dynamics. In this approach the reduced single electron density-matrix elements serve as stochastic variables which satisfy an exact Fokker-Planck equation. The number of variables ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010